
D5.1 Model development guidelines
Finn Olav Bjørnson, Martin Føre, Gunnar

Senneset, Morten Omholt Alver

Ref. Ares(2016)3133358 - 30/06/2016

AQUAEXCEL2020 Deliverable D5.1

Page 2 of 23

Executive Summary

Objectives:
The purpose of this report is to describe guidelines for model developers involved in
developing virtual laboratory solutions for the aquaculture domain. This allows for developing
new models as well as integration of existing models. The framework developed and
implemented will be flexible in terms of including new mathematical models, facilitating easy
future expansion and adaptation to other types of experiments.

Rationale:
One of the main research activities in AQUAEXCEL2020 is to develop a virtual laboratory
system that enables virtual experiments in aquaculture research facilities. This system will
feature a framework that allows the integration of mathematical models of different
subsystems in common simulations, replicating the system operation of research
laboratories. To ensure that ongoing work is taken into account, a survey of existing models
and development tools has been done among the WP5 partners.

Main Results:
Based on work in other sectors on integrating different simulation models, and comparisons
of key features, the framework FMI for Model Exchange and Co-Simulation is chosen for use
in the AQUAEXCEL2020 project. The standard allows for integration of models developed
using different tools, and is available at https://www.fmi-standard.org/downloads. The
deliverable includes examples and guidelines for model development. To ensure security,
backup and versioning history of the code, SINTEF will provide partners access to their code
collaboration server code.sintef.no.

Authors/Teams involved:
SINTEF: Finn Olav Bjørnson (lead author), Martin Føre, Gunnar Senneset
NTNU: Morten Omholt Alver
HCMR: Nikos Papandroulakis, Dina Lika
DLO-IMARES: Wout Abbink
JU: Stepan Papacek, Petr Cisar
NOFIMA: Åsa Espmark
WU: Ep Eding

https://www.fmi-standard.org/downloads

AQUAEXCEL2020 Deliverable D5.1

Page 3 of 23

Table of contents

Executive Summary .. 2

Table of contents... 3

1. BACKGROUND ... 4

2. CHOOSING A FRAMEWORK .. 4

3. FUNCTIONAL MOCK-UP INTERFACE .. 6

4. SYSTEM ARCHITECTURE .. 9

5. MODEL DEVELOPMENT GUIDELINES ... 12

6. CODE REPOSITORY .. 16

7. CONCLUSION .. 16

Glossary .. 18

Definitions ... 19

Document information ... 20

Annex 1: Check list ... 21

Annex 2: Survey .. 22

AQUAEXCEL2020 Deliverable D5.1

Page 4 of 23

1. BACKGROUND
This report is part of the AQUAEXCEL2020, WP5/Joint Research Activity 1 – Virtual
laboratories and modelling tools for designing experiments in aquaculture research facilities.

Experiments with fish usually involve extensive use of laboratory facilities and run for long
periods of time. Both from an ethical perspective (3R's) and from a cost perspective, tools for
design and planning of experiments are increasingly important. In aquaculture research as
well as other domains, numerical models are increasingly used preparatory to the actual
experiments.

One of the main research activities in AQUAEXCEL2020 is to develop a virtual laboratory
system that enables virtual experiments in aquaculture research facilities. This system will
feature a framework that allows the integration of mathematical models of different
subsystems in common simulations, replicating the system operation of research
laboratories.

The purpose of this report is to describe a system architecture/technical framework to be
used for developing virtual laboratory solutions for the aquaculture domain. This will provide
guidelines for developing new models and for the integration of existing models. The
framework developed and implemented will be flexible in terms of including new
mathematical models, facilitating easy future expansion and adaptation to other types of
experiments.

To ensure that ongoing work is taken into account, a survey of existing models and
development tools has been done among the WP5 partners (see Annex 2).

2. CHOOSING A FRAMEWORK
Some work has been done in other sectors on integrating different simulation models for
different purposes, we have identified three primary domains that have been leading within
this field.

The domain which has the longest record is military command-and-control, and several
frameworks have been developed and used for integrating different simulations into a single
scenario for wargame purposes. Starting in the middle of the 80's and running until today,
several frameworks has come and gone: SIMulator Network (SIMNET)1, Distributed
Interactive Simulation (DIS)2, and Aggregated Level Simulation Protocol (ALSP)3. The
current successor to these frameworks is the High Level Architecture (HLA)4 which is one of
the frameworks we have considered for use in this project.

The second domain that has been leading within this field is the computer game industry,
Jain and McLean (2005) describe an architecture for integrating simulation and gaming
architecture in order to facilitate incident training. However, frameworks within this category
are either described at an abstract level and not implemented, or proprietary. We have not
been able to identify open source frameworks within this domain that might be applicable for
this project.

1 https://en.wikipedia.org/wiki/SIMNET
2 https://en.wikipedia.org/wiki/Distributed_Interactive_Simulation
3 https://en.wikipedia.org/wiki/Aggregate_Level_Simulation_Protocol
4 https://en.wikipedia.org/wiki/High-level_architecture

https://en.wikipedia.org/wiki/SIMNET
https://en.wikipedia.org/wiki/Distributed_Interactive_Simulation
https://en.wikipedia.org/wiki/Aggregate_Level_Simulation_Protocol
https://en.wikipedia.org/wiki/High-level_architecture

AQUAEXCEL2020 Deliverable D5.1

Page 5 of 23

The final domain which has been a driver for model integration is the car industry. Their
vision has been to be able to create a virtual product by assembling different models that
simulate different parts of a physical system in a common simulation. Through the
MODELISAR project that ran from 2008 to 2011, the Functional Mock-up Interface (FMI)5
was defined. Today FMI is managed and developed as a Modelica Association Project. This
is the second framework we consider for use in this project.

There have also been some academic attempts to construct alternatives to the HLA, e.g. by
Leila et al. (2011) and Jain and McLean (2005). However, these frameworks and middleware
are not implemented in available frameworks for us to consider.

For the remainder of this chapter we will compare the High Level Architecture and the
Functional Mock-up Interface with respect to our needs in developing a virtual laboratory for
AQUAEXCEL2020.

High Level Architecture
The High-Level Architecture (HLA) is a general purpose architecture for distributed computer
simulation systems. Using HLA, computer simulations can interact (that is, to communicate
data, and synchronize actions) with other computer simulations regardless of computing
platforms. The interaction between simulations is managed by a run-time infrastructure (RTI).
HLA is an interoperability standard for distributed simulation used to support analysis,
engineering and training in a number of different domains in both military and civilian
applications.

The high-level architecture consists of three main components:

 Interface specification. This interface defines how HLA compatible simulations
cooperate within a run-time infrastructure. An RTI must be compliant with this
interface.

 Object Model Template (OMT). Describes what information is transmitted between
simulations, and how.

 Rules. The simulation must conform to these in order to be HLA compliant.

The HLA is supported through IEEE standard 1516:

 IEEE 1516–2010 – Standard for Modelling and Simulation High Level Architecture –
Framework and Rules

 IEEE 1516.1–2010 – Standard for Modelling and Simulation High Level Architecture –
Federate Interface Specification

 IEEE 1516.2-2010 – Standard for Modelling and Simulation High Level Architecture –
Object Model Template (OMT) Specification

The HLA uses a publish-subscribe model, where different simulation models, or federates,
can join together in a federation. A federate can register an object, and when it changes the
attributes of the object, other federates that are listening will be modified. Coordination of the
time step is handled by the RTI.

Functional Mock-up Interface
Functional Mock-up Interface (FMI) is a tool independent standard to support both model
exchange and co-simulation of dynamic models using a combination of xml-files and
compiled C-code. The FMI standard provides the means for model based development of
systems and is used for example for designing functions that are driven by electronic devices

5 https://www.fmi-standard.org/

https://www.fmi-standard.org/

AQUAEXCEL2020 Deliverable D5.1

Page 6 of 23

inside vehicles. Activities from systems modelling, simulation, validation and test can be
covered with the FMI based approach.

The typical FMI approach is described in the following stages:

 A modelling environment describes a product sub-system by differential, algebraic
and discrete equations with time, state and step-events. These models can be large
for usage in off-line or on-line simulation or can be used in embedded control systems

 As an alternative, an engineering tool defines the controller code for controlling a
vehicle system

 Such tools generate and export the component in an FMU (Functional Mock-up Unit)

 An FMU can then be imported in another environment to be executed

 Several FMUs can – by this way – cooperate at runtime through a co-simulation
environment, thanks to the FMI definitions of their interfaces.

The FMI specifications are distributed under open source licenses:

 The specifications are licensed under CC-BY-SA (Creative Commons Attribution-
Sharealike 3.0 Unported)

 The C-header and XML-schema are available under the BSD license with the
extension that modifications must also be provided under the BSD license.

Comparison

 Pros Cons

HLA Distributed

 IEEE standard

 Components can join and
withdraw in real-time

 Several open source RTI's
available

 Standard designed
specifically for military
domain.

 Stuck to a specific RTI
provider

FMI Centralized and distributed

 De facto industry standard

 Open source licenses

 Supports several tools for
modelling

 Models developed for FMI and
exported as FMU's are available
in any tool supporting FMI

 Standard designed for
automotive industry.

 Need to build our own master
algorithm for running the
FMUs.

Considering the two frameworks, it should be noted that they are not mutually exclusive. An
FMU could be compiled as a HLA federate, and a HLA federate could deliver data through
an FMU. However, for our use we have chosen to put weight on the interoperability between
different simulation tools, and FMI has a clear advantage here since it supports all tools with
FMI support as long as it is compiled according to the standard, while HLA is requiring a
potential lock-in with a specific open source community or vendor, depending on the choice
of RTI provider.

Based on this comparison, FMI will be used as the framework for developing the
AQUAEXCEL2020 virtual laboratories.

3. FUNCTIONAL MOCK-UP INTERFACE
The Functional Mock-up Interface (FMI) defines an interface to be implemented by an
executable called Functional Mock-up Unit (FMU). The FMI functions are used by a
simulation environment to create one or more instances of the FMU and to simulate them,

AQUAEXCEL2020 Deliverable D5.1

Page 7 of 23

typically together with other models. An FMU may contain its own solver, in which case we
use FMI for Co-Simulation. Alternatively, if the FMU does not contain a solver, we use FMI
for Model Exchange. This requires the simulation environment to perform the numerical
integration. The goal of the FMI is that calling an FMU within a simulation environment
should be reasonably simple.

The FMI for Model Exchange defines an interface to the model of a dynamic system
described by differential, algebraic and discrete-time equations and provides an interface to
evaluate these equations as needed in different simulation environments. The interface is
designed to allow the description of large models. Figure 1 illustrates this interface model.

Figure 1: FMI for Model Exchange (From Blochwitz 2014)

Figure 2 shows a schematic view of a model in FMI for Model Exchange format, with data
flow between the environment and an FMU for Model Exchange. Blue arrows indicate
information provided by the FMU, red arrows information provided to the FMU.

Figure 2: FMI for Model Exchange Signals (From Blochwitz 2014)

The FMI for Co-Simulation is an interface designed both for the coupling of simulation tools
as well as coupling with subsystem models, which have been exported by their simulators
together with their solvers as runnable code. When coupling different models or tools, the
modular structure of coupled problems is exploited in all stages of the simulation process.
The individual subsystems handle setup and pre-processing. During time integration the
simulation is performed independently for all subsystems, restricting data exchange between
subsystems to discrete communication points. Identifying these communication points and
the time step for integration will be one of the major research challenges during this project.
Finally, visualization and post processing of simulated data is done for each subsystem in its
own native simulation tool. Figure 3 illustrates this interface model, and Figure 4 illustrates
data flow at communication points.

AQUAEXCEL2020 Deliverable D5.1

Page 8 of 23

Figure 3: FMI for Co-Simulation (From Blochwitz 2014)

Figure 4: FMI for Co-Simulation Signals (From Blochwitz 2014)

The two interfaces have large parts in common, they were previously specified in two
standards, but as of FMI 2.0 they have merged into one standard with a large common
structure and two specific structures that can be used depending on which interface is
needed.

A component which implements the interface is called a Functional Mockup Unit. It is in
essence a zipped file renamed *.fmu, which contains:

 modelDescription.xml – a description of interface data

 Functionality API in C

 Implementation in source and/or binary form

 Additional data and functionality

One FMU can contain implementations of both interfaces. Figure 5 is an example of the
structure within an .FMU file.

Figure 5: FMU file structure (From Blochwitz 2014)

AQUAEXCEL2020 Deliverable D5.1

Page 9 of 23

Since the FMI only specifies the interface needed for a model to communicate, several use
cases are possible within this framework.

Figure 6 illustrates a single process run at a single computer. For simplicity only one slave is
shown. A master algorithm knows about the FMU and initiates it. The FMU is an FMU for Co-
Simulation and is self-contained in how to simulate its model. The Master only needs to set
initial values and instruct the FMU how long the simulation should run. If more FMUs were to
be simulated together, the master would need to specify communication steps and which
data is to be delivered from and to each FMU.

Figure 6: Standalone use case (From Blochwitz 2014)

Figure 7 illustrates the use of a tool used in simulation, e.g. a model compiled as an
executable within the Matlab runtime environment. The Master process still initiates the
simulation through an FMI interface but instead of being self contained, the FMU contains
communication protocols for initiating the second process on the same computer.

Figure 7: Tool based use case (From Blochwitz 2014)

In its most general form, a tool coupling based co-simulation is implemented on distributed
hardware with subsystems being handled by different computers with potentially different
OS. The definition of the communication layer is not part of the FMI standard, however
distributed co-simulation scenarios can be implemented using FMI as shown in Figure 8. The
master then has to implement the communication layer.

Figure 8: Distributed use case (From Blochwitz 2014)

4. SYSTEM ARCHITECTURE
At the highest abstraction level, we refer to Figure 9. The overall system idea is to develop a
user interface that will let users specify an experiment in terms of growth, water treatment
and hydrodynamic parameters. The user interface will then initiate a master algorithm that
will select and initiate the necessary FMU to run the simulation and process the experiment
based on the underlying model structure. Results will then be presented to the user through
the user interface.

AQUAEXCEL2020 Deliverable D5.1

Page 10 of 23

Figure 9: Overall System Specification

The overall initiation of models can be handled with the architecture described in Figure 10.
The Master algorithm receives the experiment setup from the user interface and then asks
FMU providers for the necessary FMUs (Stage 1). The FMU providers then handle the
initiation and setup of the necessary FMUs and returns them to the Master which then
executes the simulation (Stage 2). Through previous projects at SINTEF, this middleware
has been implemented in an open source library. All that is required to use this system is to
create the new FMU's and set up their providers.

AQUAEXCEL2020 Deliverable D5.1

Page 11 of 23

Domain

Master
A
P
I

FMU provider
A
P
I

FMU provider
A
P
I

FMU
F
M
I

FMU
F
M
I

Executor

Figure 10: Master initiation architecture

An example simulation after the Master simulation has initiated an experiment with two water
tanks running the same hydrodynamic flow field model, but with different growth and water
quality models (Stage 2 in Figure 10) would look something like Figure 11.

Water quality
and water
treatment

model

Hydrodynamic
flow field

model

Master simulation

Web interface

Growth,
nutrition and
waste model

Growth,
nutrition and
waste model

Water quality
and water
treatment

model

Figure 11: Example simulation

AQUAEXCEL2020 Deliverable D5.1

Page 12 of 23

5. MODEL DEVELOPMENT GUIDELINES
When using FMI, models may in principle be developed using any programming language or
modelling framework as long as it is possible to export models from these languages or tools
to FMUs. In AQUAEXCEL2020 we aim to primarily use FMI for co-simulation, and this entails
that the FMUs developed for the virtual laboratory need to output their variable values at
each communication time step. Furthermore, the FMUs must offer functions the FMI master
can use to:

1. Instantiate the FMU
2. Initialise the FMU
3. Set the variables of the FMU
4. Read the variables of the FMU
5. Stepping the integration internally in the FMU forward in time

There exist today several software tools and packages designed for generating FMUs based
on implemented models (https://www.fmi-standard.org/tools), many of which are aimed at
models implemented in modelling frameworks including MATLAB SIMULINK, Modelica and
ANSYS. The number of such tools is at present rapidly increasing together with the number
of FMI users within research and industry, and some tools are open source while others
require a license. In addition to framework specific tools, FMU support is possible to
implement directly into programming languages such as Java, C++ and C by including and
linking the source code files with the FMI SDK (https://www.fmi-standard.org/downloads). It is
also possible to generate FMUs containing models that are implemented in tools or
languages that do not support FMU export by wrapping these models in a C or C++ shell
which provides FMU functionality. However, this solution will be limited to languages and
tools which retain some degree of C/C++ compatibility, and would probably be more labour
intensive than using languages or tools with FMU support.

To exemplify how FMUs must be designed to fit with the FMI system used in
AQUAEXCEL2020, we will in the following use a hypothetical example where a simple
simulation is set up using a model of a fish population coupled with a model of feed
consumption. Since FMUs may be generated from models implemented in a wide variety of
different languages and platforms, we will primarily focus on the aspects that are parts of the
FMI standard rather than looking into the details on how to generate FMUs from different
models. The example will adhere to the properties of the FMI master used in
AQUAEXCEL2020.

As stated previously, an FMU is essentially a zip-file containing several files and sub-folders.
While some of these may only be required in particular cases, or for documentation
purposes, others are required for the FMU to be executable by an FMI master:

 binaries: folder containing compiled runtime versions of the model

 sources: folder containing the source code for the model

 modelDescription.xml: file describing the input/output interface of the model, and
some of the model properties

While the contents of the "binaries" and "sources" will mostly be determined by the model
implementation and platform/language used for implementation, modelDescription.xml must
be designed such that it clearly states the input/output interface of the model to the FMI
master. This file must also offer any additional information the FMI system will need, such as
which version of the FMI standard the FMU supports. Some of the information provided in
modelDescription-files may be similar between FMUs, whereas other parameters are model
dependent, and hence pertain to the individual FMUs. Some of the most important of these
are:

 modelName: textual name used to refer to the FMU type/class when setting up
simulations

https://www.fmi-standard.org/tools
https://www.fmi-standard.org/downloads

AQUAEXCEL2020 Deliverable D5.1

Page 13 of 23

 guid: unique identifier string used to distinguish between different FMUs in the FMI
system

 <ModelVariables>: segment describing the model variables by providing a unique
textual name, a unique reference number, whether it is variable or not, whether it is
internal, an input to or an output from the model, as well as an initial value

The modelDescription-file for FMU containing the biomass model in our hypothetical example
would hence contain parameters reflecting the properties of the model:

<?xml version="1.0" encoding="utf-8" ?>

<fmiModelDescription

 fmiVersion="1.0"

 modelName="AQUAEXCEL2020.fishPopulation"

 modelIdentifier="fishPopulation"

 guid="91b2eb04-d47e-4afb-a92d-396b8291ef21"

 author="Martin Føre"

 description="Model of fish population converting feed input to biomass"

 version="1.1"

 variableNamingConvention="structured"

 numberOfContinuousStates="0"

 numberOfEventIndicators="0">

 <ModelVariables>

 <ScalarVariable name="FeedConsumption" valueReference="0" variability="continuous"

 causality="input" ><Real start="0.0" /></ScalarVariable>

 <ScalarVariable name="Biomass" valueReference="1" variability="continuous"

 causality="output"><Real start="2.0" /></ScalarVariable>

 </ModelVariables>

 <Implementation>

 <CoSimulation_StandAlone>

 <Capabilities

 canHandleVariableCommunicationStepSize="true"

 canBeInstantiatedOnlyOncePerProcess="false" />

 </CoSimulation_StandAlone>

 </Implementation>

</fmiModelDescription>

In this example we've chosen a naming convention describing both which project the FMU
pertains to and the scope of the model contained within the FMU, hence modelName is set
to "AQUAEXCEL2020.fishPopulation". Further, our hypothetic model has a very simplified
input/output regime, where the model only has one scalar input variable (FeedConsumption)
and one scalar output variable (Biomass). Both of these are defined in the modelDescription-
file as continuous input/output variables, with initial Biomass being set to 2.0 kg.

Correspondingly, the modelDescription-file for the feed model FMU would contain the
information required to describe the contained feed model:

<?xml version="1.0" encoding="utf-8" ?>

<fmiModelDescription

 fmiVersion="1.0"

 modelName="AQUAEXCEL2020.feed"

 modelIdentifier="feed"

 guid="91b2eb04-d47e-4afb-a92d-396b8291ef22"

 author="Martin Føre"

 description="Model of feed consumption based on fish population biomass"

 version="1.1"

 variableNamingConvention="structured"

 numberOfContinuousStates="0"

 numberOfEventIndicators="0">

 <ModelVariables>

 <ScalarVariable name="Biomass" valueReference="0" variability="continuous"

 causality="input" ><Real start="2.0" /></ScalarVariable>

<ScalarVariable name="FeedConsumption" valueReference="1" variability="continuous"

 causality="output"><Real start="0.0" /></ScalarVariable>

 </ModelVariables>

 <Implementation>

AQUAEXCEL2020 Deliverable D5.1

Page 14 of 23

 <CoSimulation_StandAlone>

 <Capabilities

 canHandleVariableCommunicationStepSize="true"

 canBeInstantiatedOnlyOncePerProcess="false" />

 </CoSimulation_StandAlone>

 </Implementation>

</fmiModelDescription>

Using the same naming convention, this FMU is given the modelName
"AQUAEXCEL2020.feed". Further, the guid value is different from that used in the
"AQUAEXCEL2020.fishPopulation" FMU, such that these two are possible to distinguish.
This FMU has two variables which mirror those in the biomass-FMU, however with Biomass
being an input variable and FeedConsumption being an output.

To set up a simulation using FMI, it is necessary to specify which FMUs should be used in
the simulation, and how these models should be interconnected. This information needs to
be provided to the FMI system so that the FMI master is able to instantiate and interconnect
the FMUs properly. Since the contents of the modelDescription-files represents the only
information the FMI master has on the FMUs, it is important that the simulation setup
description adheres to this information in using the same model names (modelName) and
variable names (in <ModelVariables>) as used in the modelDescription-files of the desired
FMUs. The Executor application in the FMI master used in the virtual laboratory in
AQUAEXCEL2020 (Figure 10) requires this information to be delivered in the form of a
sysconf-file, which is a text file listing the model instances that will be included in the
simulation, and how these model instances will be interconnected. In our hypothetical
example setup this file could be set up in this manner:

name "DEMO: Interacting fish population and feed models"

slaves {

 Population1 {

 type AQUAEXCEL2020.fishPopulation

 }

 Feed1 {

 type AQUAEXCEL2020.feed

 }

}

connections {

 Population1.FeedConsumption Feed1.FeedConsumption

 Feed1.Biomass Population1.Biomass

}

The segment slaves in this file lists the models to be used in the simulation and which types
of FMU these should be instances of. Although this example only contains single instances
of the FMU types AQUAEXCEL2020.fishPopulation (Population1) and
AQUAEXCEL2020.feed (Feed1), it is possible to create an arbitrary number of instances of
any given FMU type in an FMI system (as illustrated in Figure 11). When the Executor
application has parsed this information, it will request instances of the selected FMU types
from an appropriate FMU Provider (see Figure 10). The Executor then assigns values to the
input variables of the FMUs as described in the connections segment of the file. This is done
by writing the name of an input port and the output port connected to this input port in the
same line spaced by a void. For our hypothetical case this is done by setting the input
variable FeedConsumption in the fishPopulation instance named "Population1" to the
FeedConsumption output variable in the feed instance named "Feed1", and vice versa for the
Biomass variables in both FMUs. This results in a simple model setup with two models
interacting through their respective input/output variables (Figure 12).

AQUAEXCEL2020 Deliverable D5.1

Page 15 of 23

Population1 Feed1

FeedConsumption

Biomass

Figure 12: Model setup of the simple hypothetical example.

Since FMI for co-simulation assumes that all models handle their state advancement and
integration internally, there are only three parameters that need to be specified to initialise a
simulation, namely the start time, stop time and communication time step size used in the
simulation. The Executor application used in this project requires this information to be
provided through a simple text file with .execonf extension, and that these times are given in
seconds. For example, the execution of a simulation lasting 1 day (=24 h = 86400 s) with a
time step of 100 s would require an execonf-file containing three lines:

start 0.0

stop 86400

step_size 100

Once the Executor has parsed this information the simulation is ready to start, and the user
is prompted to start the simulation at his/her leisure by a key stroke.

The outputs from a simulation using FMI will typically include all the variables defined in the
FMUs at all communication times. In the FMI system used in AQUAEXCEL2020 this is
realised by creating one csv-file per FMU used in a simulation, and that all variables
pertaining to this FMU are stored in that csv-file. The output files from the FMUs used in the
hypothetical simulation could hence look like this:

Time,FeedConsumption,Biomass Time,Biomass,FeedConsumption

100,0,2 100,2,0

200,1,2.6 200,2.6,1

300,1.1,3.5 300,3.5,1.1

300,0.6,4.1 300,4.1,0.6

400,0.95,4.7 400,4.7,0.95

500,0,4.7 500,4.7,0

600,0,4.7 600,4.7,0

700,1.2,5.5 700,5.5,1.2

800,1.5,6.5 800,6.5,1.5

900,0.5,6.8 900,6.8,0.5

1000,0.6,7.0 1000,7.0,0.6

Table 1: Possible contents of the output files from a fishPopulation FMU (left column) and a feed FMU
(right column) over a simulation of 1000 seconds. All data are fictional.

The time series for the variables FeedConsumption and Biomass occur in both output files as
they are input variables in one FMU and output variables in the other. In our hypothetical

AQUAEXCEL2020 Deliverable D5.1

Page 16 of 23

simulation scenario, the biomass starts at 2.0 kg and increases to 7.0 kg through the
simulation, while the feed consumption also increases with increased biomass (Table 1).

6. CODE REPOSITORY
In order to ensure proper security, backup and versioning history of the code developed in
this project, SINTEF will provide access to their code-collaboration server (code.sintef.no) for
the project partners. Primarily we will use Bitbucket6 (previously Stash) which provides code
management through a Git versioning system. Other services that are available on the server
and might be considered for use in the project are Confluence7 for knowledge sharing, Jira8
for issue tracking and Bamboo9 as build server. Secure access will be handled by requiring
all participants to have a valid X.509 certificate issued by SINTEF and direct Git-access to
Bitbucket will only be available through ssh-keys. It will be up to the project participants
which git-client they prefer to access the server in order to download or upload code. For
those unfamiliar with the Git versioning system, we recommend the book Pro Git10, available
for free online. SINTEF will provide support in acquiring access to code.sintef.no for the
project participants.

7. CONCLUSION
For the AQUAEXCEL2020 project we will use the FMI for Model Exchange and Co-
Simulation standard, available at https://www.fmi-standard.org/downloads

The user interface and the FMI master will be developed as part of task 5.4 in the WP5 work-
package, while the FMU's will be developed in tasks 5.1 to 5.3 (see Figure 10 and Figure
11).

In order to verify that each partner conforms to the standard we will use the FMU Compliance
Checker 2.0.1, also available at https://www.fmi-standard.org/downloads

To ensure security, backup and versioning history, we will use SINTEF's code-collaboration
server code.sintef.no which provides the Git-versioning system Bitbucket.

References

Jalali, L., Mehrotra S., Venkatasubramanian, N., Multisimulations: Towards Next Generation
Integrated Simulation Environments in Formal Modeling: Actors, Open Systems, Biological
Systems Volume 7000 of the series Lecture Notes in Computer Science, Agha, G. Danvy,
O., Meseguer, J. eds, 352-367, 2011, Springer-Verlag Berlin Heidelberg
Jain, S., McLean, C. R. Integrated Simulation and Gaming Architecture for Incident
Management Training in Proceedings of the 2005 Winter Simulation Conference, 2005, 904-
913
Blochwitz, T., Tutorial: Functional Mockup Interface 2.0 and HiL Applications, presentation
from the 10th International Modelica Conference 2014 available at https://www.fmi-
standard.org/literature

6 https://www.atlassian.com/software/bitbucket
7 https://www.atlassian.com/software/confluence
8 https://www.atlassian.com/software/jira
9 https://www.atlassian.com/software/bamboo
10 https://git-scm.com/book/en/v2

https://www.fmi-standard.org/downloads
https://www.fmi-standard.org/downloads
https://www.fmi-standard.org/literature
https://www.fmi-standard.org/literature
https://www.atlassian.com/software/bitbucket
https://www.atlassian.com/software/confluence
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/bamboo
https://git-scm.com/book/en/v2

AQUAEXCEL2020 Deliverable D5.1

Page 17 of 23

AQUAEXCEL2020 Deliverable D5.1

Page 18 of 23

Glossary

AQUAEXCEL2020: AQUAculture Infrastructures for EXCELlence in European Fish Research
towards 2020

HLA: High Level Architecture
RTI: Run time infrastructure
OMT: Object Model Template
FMI: Functional Mock-up Interface
FMU: Functional Mock-up Unit

AQUAEXCEL2020 Deliverable D5.1

Page 19 of 23

Definitions

Domain: Particular area of activity or interest

Software framework: Reusable software environment that facilitates development of software
applications, products and solutions

System architecture: Conceptual model that defines the structure and behaviour of a system

Virtual laboratory: An interactive environment for creating and conducting simulated
experiments

3R: Guiding principles for more ethical use of animals in testing (Replacement, Reduction,
Refinement)

AQUAEXCEL2020 Deliverable D5.1

Page 20 of 23

Document information

EU Project N° 652831 Acronym AQUAEXCEL2020

Full Title
AQUAculture Infrastructures for EXCELlence in European Fish
Research towards 2020

Project website www.aquaexcel.eu

Deliverable N° D5.1 Title Model development guidelines

Work Package N° 5 Title Virtual laboratories and modelling tools for
designing experiments in aquaculture facilities

Date of delivery Contractual 30/06/2016 (Month
9)

Actual 30/06/2016
(Month 9)

Dissemination
level

X PU Public, fully open, e.g. web

 CO Confidential, restricted under conditions set out in Model
Grant Agreement

 CI Classified, information as referred to in Commission
Decision 2001/844/EC.

Authors
(Partner)

Responsible
Author

Name Finn Olav Bjørnson Email Finnolav.bjornson@sintef.no

Version log

Issue Date Revision N° Author Change

20/05/2016 0 Finn Olav Bjørnson First version

25/05/2016 1 Gunnar Senneset First review by WP
leader

17/06/2016 2 Finn Olav Bjørnson Revision after review
by assigned reviewer
and coordinator

http://www.aquaexcel.eu/

AQUAEXCEL2020 Deliverable D5.1

Page 21 of 23

Annex 1: Check list

Deliverable Check list (to be checked by the “Deliverable leader”)

 Check list Comments

B
E

F
O

R
E

I have checked the due date and have
planned completion in due time

X Please inform Management Team of
any foreseen delays

The title corresponds to the title in the DOW X
If not please inform the Management
Team with justification

The dissemination level corresponds to that
indicated in the DOW

X

The contributors (authors) correspond to
those indicated in the DOW

X

The Table of Contents has been validated
with the Activity Leader

X Please validate the Table of Content
with your Activity Leader before
drafting the deliverable

I am using the AQUAEXCEL2020 deliverable
template (title page, styles etc)

X Available in “Useful Documents” on
the collaborative workspace

The draft is ready

A
F

T
E

R

I have written a good summary at the
beginning of the Deliverable

X A 1-2 pages maximum summary is
mandatory (not formal but really
informative on the content of the
Deliverable)

The deliverable has been reviewed by all
contributors (authors)

X Make sure all contributors have
reviewed and approved the final
version of the deliverable. You
should leave sufficient time for this
validation.

I have done a spell check and had the
English verified

X

I have sent the final version to the WP
Leader, to the 2nd Reviewer and to the
Project coordinator (cc to the project
manager) for approval

X Send the final draft to your
WPLeader, the 2nd Reviewer and the
coordinator with cc to the project
manager on the 1st day of the due
month and leave 2 weeks for
feedback. Inform the reviewers of
the changes (if any) you have made
to address their comments. Once
validated by the 2 reviewers and the
coordinator, send the final version to
the Project Manager who will then
submit it to the EC.

AQUAEXCEL2020 Deliverable D5.1

Page 22 of 23

Annex 2: Survey

HCMR

JU

AQUAEXCEL2020 Deliverable D5.1

Page 23 of 23

Nofima

SINTEF

